Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.
نویسندگان
چکیده
Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.
منابع مشابه
Synaptic Plasticity Controls Sensory Responses through Frequency-Dependent Gamma Oscillation Resonance
Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory response in the ...
متن کاملSurround Modulation Characteristics of Local Field Potential and Spiking Activity in Primary Visual Cortex of Cat
In primary visual cortex, spiking activity that evoked by stimulus confined in receptive field can be modulated by surround stimulus. This center-surround interaction is hypothesized to be the basis of visual feature integration and segregation. Spiking output has been extensively reported to be surround suppressive. However, less is known about the modulation properties of the local field pote...
متن کاملDynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization.
Synchronous neuronal activity with millisecond precision has been postulated to contribute to the process of visual perceptual grouping. We have performed multineuron recordings in striate cortex of two alert macaque monkeys to determine if the occurrence and properties of this form of activity are consistent with the minimal requirements of this theory. We find that neuronal synchronization wi...
متن کاملDeconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 1...
متن کاملMembrane Resonance Enables Stable and Robust Gamma Oscillations
Neuronal mechanisms underlying beta/gamma oscillations (20-80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2005